Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Neurol ; 270(7): 3294-3302, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2326111

ABSTRACT

BACKGROUND: Post-COVID-Fatigue (PCF) is one of the most reported symptoms following SARS-CoV-2 infection. Currently, research on persistent symptoms focuses mainly on severe infections, while outpatients are rarely included in observations. OBJECTIVE: To investigate whether the severity of PCF is related to the number of acute and persistent symptoms due to mild-to-moderate COVID-19 and to compare the most common symptoms during acute infection with the persistent symptoms in PCF patients. METHODS: A total of 425 participants were examined after COVID-19 treated as an outpatient (median 249 days [IQR: 135; 322] after acute disease) at the site of University Hospital Augsburg, Germany. The Fatigue Assessment Scale (FAS) was used to quantify the severity of PCF. The number of symptoms (maximum 41) during acute infection and persistent symptoms (during the last 14 days before examination) were added up to sum scores. Multivariable linear regression models were used to show the association between the number of symptoms and PCF. RESULTS: Of the 425 participants, 37% (n = 157) developed PCF; most were women (70%). The median number of symptoms was significantly higher in the PCF group than in the non-PCF group at both time points. In multivariable linear regression models, both sum scores were associated with PCF (acute symptoms: ß-estimate per additional symptom [95%-CI]: 0.48 [0.39; 0.57], p < 0.0001); persistent symptoms: ß-estimate per additional symptom [95%-CI]: 1.18 [1.02; 1.34], p < 0.0001). The acute symptoms strongest associated with PCF severity were difficulty concentrating, memory problems, dyspnea or shortness of breath on exertion, palpitations, and problems with movement coordination. CONCLUSION: Each additional symptom that occurs in COVID-19 increases the likelihood of suffering a higher severity of PCF. Further research is needed to identify the aetiology of PCF. TRIAL REGISTRATION: Nr. NCT04615026. Date of registration: November 4, 2020.


Subject(s)
COVID-19 , Humans , Female , Male , COVID-19/complications , Outpatients , SARS-CoV-2 , Risk Factors , Fatigue/epidemiology , Fatigue/etiology
2.
Viral Immunol ; 35(7): 491-502, 2022 09.
Article in English | MEDLINE | ID: covidwho-2297458

ABSTRACT

Lymphocytes are the main orchestrators that regulate the immune response in SARS-COV-2 infection. The exhaustion of T lymphocytes is a contributing factor to lymphopenia, which is responsible for the COVID-19 adverse outcome. However, it is still not demonstrated on a large scale, including cancer patients. Peripheral blood samples were obtained from 83 SARS-CoV2 infected cancer patients, and 29 COVID-19 infected noncancer patients compared to 28 age-matched healthy controls. Lymphocyte subsets were assessed for CD3, CD4, CD8, CD56, PD-1, and CD95 using flow cytometry. The data were correlated to the patients' clinical features, COVID-19 severity and outcomes. Lymphopenia, and decreased CD4+ T cells and CD8+ T cells were significantly observed in COVID-19 cancer and noncancer patients compared to the control group (p < 0.001, for all). There was a significantly increased expression of CD95 and PD-1 on the NK cells, CD4+ T cells, and CD8+ T cells in COVID-19 cancer and noncancer patients in comparison to the control group. The increased expression of CD95 on CD8+ T cells, as well as the increased expression of PD-1 on CD8+ T cells and NK cells are significantly associated with the severity of COVID-19 infection in cancer patients. The increased expression of CD95 and PD-1 on the CD4+ T cells, CD8+ T cells, and NK cells was observed significantly in nonsurviving patients and those who were admitted to the intensive care unit in COVID-19 cancer and noncancer patients. The increased expression of PD-1 and CD95 could be possible prognostic factors for COVID-19 severity and adverse outcomes in COVID-19 cancer and noncancer patients.


Subject(s)
COVID-19 , Lymphopenia , Neoplasms , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Lymphocyte Subsets , Lymphopenia/metabolism , Neoplasms/complications , Neoplasms/metabolism , Programmed Cell Death 1 Receptor , RNA, Viral/metabolism , SARS-CoV-2 , T-Lymphocyte Subsets
3.
Atatürk &Uuml ; niversitesi Ziraat Fakültesi Dergisi; 53(3):147-154, 2022.
Article in English | ProQuest Central | ID: covidwho-2280517

ABSTRACT

Recently, the novel coronavirus, which is called severe acute respiratory syndrome coronavirus 2, has been responsible for the highly rapid spread of COVID-19 disease, globally. Until now, 535 million people were affected and 6.3 million people died due to this outbreak throughout the World. Although the lethality of this disease is lower than the severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome, severe complications of this disease are attributed to "cytokine storm” that is the reason for the severe lung damage. The cytokine storm causes systemic inflammation, acute respiratory distress syndrome, septic shock, stroke, multiple organ dysfunction, and death. As a result of these symptoms, there are pivotal studies about vaccination, drug, and medication to prevent severe complications and treat patients with COVID-19. Besides these studies, some research shows that nutrients are able to manage the cytokine storm such as many types of vitamins, trace elements, and omega 3 fatty acids. Omega 3 polyunsaturated fatty acids have specific roles in the inflammatory process. Omega 3 fatty acids have a role in the improvement of the inflammatory balance. They interact with viral infection in disparate stages such as viral entry and replication. This study highlights the roles of omega 3 polyunsaturated fatty acids in the prevention and treatment of the COVID-19. In addition, omega 3 fatty acids show anti-viral and anti-inflammatory effects on the severe acute respiratory syndrome coronavirus 2 and increase survival rates in patients infected with COVID-19.

4.
Front Immunol ; 13: 947401, 2022.
Article in English | MEDLINE | ID: covidwho-2141978

ABSTRACT

Finding cytokine storm initiator factors associated with uncontrolled inflammatory immune response is necessary in COVID-19 patients. The aim was the identification of Fas/Fas Ligand (FasL) role in lung involvement and mortality of COVID-19 patients. In this case-control study, mild (outpatient), moderate (hospitalized), and severe (ICU) COVID-19 patients and healthy subjects were investigated. RNA isolated from PBMCs for cDNA synthesis and expression of mFas/mFasL mRNA was evaluated by RT-PCR. Serum sFas/sFasL protein by ELISA and severity of lung involvement by CT-scan were evaluated. Also, we docked Fas and FasL via Bioinformatics software (in silico) to predict the best-fit Fas/FasL complex and performed molecular dynamics simulation (MDS) in hyponatremia and fever (COVID-19 patients), and healthy conditions. mFasL expression was increased in moderate and severe COVID-19 patients compared to the control group. Moreover, mFas expression showed an inverse correlation with myalgia symptom in COVID-19 patients. Elevation of sFasL protein in serum was associated with reduced lung injury and mortality. Bioinformatics analysis confirmed that blood profile alterations of COVID-19 patients, such as fever and hyponatremia could affect Fas/FasL complex interactions. Our translational findings showed that decreased sFasL is associated with lung involvement; severity and mortality in COVID-19 patients. We think that sFasL is a mediator of neutrophilia and lymphopenia in COVID-19. However, additional investigation is suggested. This is the first report describing that the serum sFasL protein is a severity and mortality prognostic marker for the clinical management of COVID-19 patients.


Subject(s)
COVID-19 , Hyponatremia , Case-Control Studies , DNA, Complementary , Fas Ligand Protein , Humans , Prognosis , RNA , RNA, Messenger , fas Receptor/metabolism
5.
International Journal of Happiness and Development ; 7(2):142-158, 2022.
Article in English | Web of Science | ID: covidwho-2022015

ABSTRACT

In poverty-stricken countries, the middle class usually falls out of focus in fiscal policy discussions, especially during crises, such as the COVID-19 pandemic. This research aims to determine if the pandemic has impacted subjective well-being (SWB) and financial anxiety (FAS) for a middle-class Bangladeshi sample. During 14-24 July 2020, 129 respondents completed a self-reported survey questionnaire. The results indicate that although people are happy in general, they are worried about their relationships. Women score lower on total well-being, as do those with household incomes below the average. People living outside the capital score marginally higher, people with well-secured jobs denote their higher well-being too. Furthermore, the FAS results indicate higher levels of anxiety among people with lower incomes and unsecured jobs. Therefore, the COVID-19 experience might inform future fiscal policies, including the potential to introduce universal job security insurance and financial counselling to employees after the pandemic.

6.
Eur J Integr Med ; 55: 102179, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1996160

ABSTRACT

Introduction: SARS-CoV-2 causes severe acute respiratory syndrome prompting worldwide demand for new antiviral treatments and supportive care for organ failure caused by this life-threatening virus. This study aimed to help develop a new Traditional Persian Medicine (TPM) -based drug and assess its efficacy and safety in COVID-19 patients with major symptoms. Methods: In February 2022, a randomized clinical trial was conducted among 160 patients with a confirmed diagnosis of COVID-19 admitted to Emam Reza (AJA) Hospital in Tehran, Iran. During their hospitalization, the intervention group received a treatment protocol approved by Iran's Ministry of Health and Medical Education (MOHME), consisting of an Iranian regimen, Ficus carica; Vitis vinifera, Safflower, Cicer arietinum, Descurainiasophia seeds, Ziziphus jujuba, chicken soup, barley soup, rose water, saffron, and cinnamon spices. All patients were compared in terms of demographics, clinical, and laboratory variables. Results: One hundred and sixty COVID-19 patients were divided into two groups: intervention and control. In baseline characteristics, there was no significant difference between the intervention and control groups (p>0.05). Using SPSS software version 22, statistical analysis revealed a significant difference in four symptoms: myalgia, weakness, headache, and cough (p<0.05). During the 5-day treatment period, the control group had significantly lower C-reactive protein (p<0.05). Conclusion: While more research with a larger sample size is needed, the proposed combination appears to be effective in the treatment of symptoms as well as inflammatory biomarkers such as C-reactive protein in COVID-19 patients.Iranian registry of clinical trials (IRCT) IRCT20220227054140N1.

7.
Biochemical and Cellular Archives ; 21(2):1-2, 2021.
Article in English | EMBASE | ID: covidwho-1812557
9.
Nat Prod Res ; 36(22): 5817-5822, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1585378

ABSTRACT

Tissue damage occurs in COVID-19 patients due to nsp3-induced Fas-FasL interaction/TNF-related apoptosis. Presently, possible therapeutic-drug, nigellidine against was screened by bioinformatics studies COVID-19. Atomic-Contact-Energy (ACE) and binding-blocking effects were explored of nigellidine (Nigella sativa L.) in the active/catalytic sites of viral-protein nsp3 and host inflammatory/apoptotic signaling-molecules Fas/TNF receptors TNFR1/TNFR2. A control binding/inhibition of Oseltamivir to influenza-virus neuraminidase was compared here. In AutoDock, Oseltamivir binding-energy (BE) and inhibition-constant (KI) was -4.12 kcal/mol and 959.02. The ACE values (PatchDock) were -167.02/-127.61/-124.91/-122.17/-54.81/-47.07. The nigellidine BE/KI with nsp3 was -7.61 and 2.66, respectively (ACE values were -221.40/-215.62/-113.28). Nigellidine blocked FAS dimer by binding with a BE value of -7.41 kcal/mol. Its strong affinities to TNFR1 (-6.81) and TNFR2 (-5.1) are demonstrated. Our present data suggest that nigellidine may significantly block the TNF-induced inflammatory/Fas-induced apoptotic death-signaling in comparison with a positive-control drug Oseltamivir. Further studies are necessary before proposing nigellidine as medical drug.


Subject(s)
COVID-19 Drug Treatment , Cuminum , Nigella sativa , Humans , Receptors, Tumor Necrosis Factor, Type I/chemistry , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/pharmacology , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/pharmacology , Nigella sativa/metabolism , Cuminum/metabolism , SARS-CoV-2 , Oseltamivir/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Apoptosis , Seeds/metabolism , Virus Replication
10.
Pediatric Rheumatology ; 19(SUPPL 1), 2021.
Article in English | EMBASE | ID: covidwho-1571804

ABSTRACT

Introduction: After spring 2020, a series of reports from Europe and USA described clusters of children, presenting life-threatening multisystem inflammatory syndrome in children (MIS-C), associated with antecedent exposure to SARS-CoV-2 (1). In patients with life threatening COVID-19 3.5% were found to have inborn errors in type I IFN signalling pathway (2). A case series of 4 young patients with severe COVID-19 reported rare loss-of-function variants in the TLR7 gene associated with impaired type I IFN responses (3). Clinically, MIS-C shares features with secondary hemophagocytic lymphohistiocytosis (HLH) and Kawasaki disease (KD), which were also associated with possible infectious trigger and might share a common genetic cause (4). Objectives: We analysed whether MIS-C patients have an underlying presence of genetic variants in exomes associated with inborn errors of type I IFN immunity, HLH, KD and presence of variants in TLR7 gene. Methods: Blood was drawn from 17 MIS-C patients upon submission into the hospital, DNA from peripheral blood was isolated and whole exome sequencing was performed. Variants in the following genes were investigated: type I IFN immunity (TLR3, UNC93B1, TRAF3, TBK1, IRF3/9, IRF7, IFNAR1/2, STAT1/2, IKBKG, TRIF), HLH (AP3B1, CD27, FADD, FAS, FASLG, HPLH1, ITK, LYST, MAGT1, MYO5A, NLRC4, PRF1, RAB27A, RECQL4, SH2D1A, STX11, STXBP2, UNC13D, XIAP, TNFRSF9, CDC42), KD (ITPKC, CD40, FCGR2A, BLK, CASP3, TRX-CAT1-7, PGBD1, LTA, TSBP1, HLA-DQB1/2, HLA-DOB, IGHV1-69) and TLR7 genes. Analysis was focused on rare (GnomAD<0.01) exonic or splicing variants. Results: No common genetic denominators were found in analysed genes. Five rare variants were observed in four patients (4/17). According to ACMG classification variants of uncertain significance (VUS) were found in LYST (2), IKBKG (1), IRF3 (1) and NLRC4 (1) in heterozygous genotype. No clinical evidence was found in ClinVar database for any of the variants, except for one variant in LYST (c.3931A>G:p.M1311V) with uncertain significance for Chédiak-Higashi syndrome and medium prediction scores. Variants in LYST (c.5990C>G:p.A1997G), NLRC4 (c.772T>C:p.C258R) and IRF3 (c.325G>C: p.G109R) have high CADD, Mutation Taster, Polyphen and SIFT prediction scores. And IKBKG (c.325C>G:p.L109V) variant had medium prediction scores. Conclusion: Our findings suggest that MIS-C patients do not share a rare loss-of-function variant in type I IFN immunity genes, TLR7 gene or genes associated either with HLH or KD. Despite numerous clinical, immunological and genetic research of the MIS-C patients, the syndromes pathogenesis and etiologic cause remain elusive.

11.
Clin Transl Immunology ; 10(12): e1357, 2021.
Article in English | MEDLINE | ID: covidwho-1568012

ABSTRACT

OBJECTIVES: Critically ill coronavirus disease 2019 (COVID-19) patients are characterised by a severely dysregulated cytokine profile and elevated neutrophil counts, impacting disease severity. However, it remains unclear how neutrophils contribute to pathophysiology during COVID-19. Here, we assessed the impact of the dysregulated cytokine profile on the regulated cell death (RCD) programme of neutrophils. METHODS: Regulated cell death phenotype of neutrophils isolated from critically ill COVID-19 patients or healthy donors and stimulated with COVID-19 or healthy plasma ex vivo was assessed by flow cytometry, time-lapse microscopy and cytokine multiplex analysis. Immunohistochemistry of COVID-19 patients and control biopsies were performed to assess the in situ neutrophil RCD phenotype. Plasma cytokine levels of COVID-19 patients and healthy donors were measured by multiplex analysis. Clinical parameters were correlated to cytokine levels of COVID-19 patients. RESULTS: COVID-19 plasma induced a necroptosis-sensitive neutrophil phenotype, characterised by cell lysis, elevated release of damage-associated molecular patterns (DAMPs), increased receptor-interacting serine/threonine-protein kinase (RIPK) 1 levels and mixed lineage kinase domain-like pseudokinase (MLKL) involvement. The occurrence of neutrophil necroptosis MLKL axis was further confirmed in COVID-19 thrombus and lung biopsies. Necroptosis was induced by the tumor necrosis factor receptor 1 (TNFRI)/TNF-α axis. Moreover, reduction of soluble Fas ligand (sFasL) levels in COVID-19 patients and hence decreased signalling to Fas directly increased RIPK1 levels, exacerbated TNF-driven necroptosis and correlated with disease severity, which was abolished in patients treated with glucocorticoids. CONCLUSION: Our results suggest a novel role for sFasL signalling in the TNF-α-induced RCD programme in neutrophils during COVID-19 and a potential therapeutic target to curb inflammation and thus influence disease severity and outcome.

12.
Int J Mol Sci ; 22(4)2021 Feb 22.
Article in English | MEDLINE | ID: covidwho-1110433

ABSTRACT

By dint of the aging population and further deepened with the Covid-19 pandemic, lung disease has turned out to be a major cause of worldwide morbidity and mortality. The condition is exacerbated when the immune system further attacks the healthy, rather than the diseased, tissue within the lung. Governed by unremittingly proliferating mesenchymal cells and increased collagen deposition, if inflammation persists, as frequently occurs in aging lungs, the tissue develops tumors and/or turns into scars (fibrosis), with limited regenerative capacity and organ failure. Fas ligand (FasL, a ligand of the Fas cell death receptor) is a key factor in the regulation of these processes. FasL is primarily found in two forms: full length (membrane, or mFasL) and cleaved (soluble, or sFasL). We and others found that T-cells expressing the mFasL retain autoimmune surveillance that controls mesenchymal, as well as tumor cell accumulation following an inflammatory response. However, mesenchymal cells from fibrotic lungs, tumor cells, or cells from immune-privileged sites, resist FasL+ T-cell-induced cell death. The mechanisms involved are a counterattack of immune cells by FasL, by releasing a soluble form of FasL that competes with the membrane version, and inhibits their cell death, promoting cell survival. This review focuses on understanding the previously unrecognized role of FasL, and in particular its soluble form, sFasL, in the serum of aged subjects, and its association with the evolution of lung disease, paving the way to new methods of diagnosis and treatment.


Subject(s)
COVID-19/immunology , Fas Ligand Protein/immunology , Lung Diseases/immunology , Lung/immunology , Age Factors , Aged , COVID-19/blood , Cell Death/immunology , Fas Ligand Protein/blood , Humans , Immunity , Lung Diseases/blood , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , T-Lymphocytes/immunology
13.
Front Immunol ; 11: 600405, 2020.
Article in English | MEDLINE | ID: covidwho-1013339

ABSTRACT

Aberrant T cell differentiation and lymphopenia are hallmarks of severe COVID-19 disease. Since T cells must race to cull infected cells, they are quick to differentiate and achieve cytotoxic function. With this responsiveness, comes hastened apoptosis, due to a coupled mechanism of death and differentiation in both CD4+ and CD8+ lymphocytes via CD95 (Fas) and serine-threonine kinase (Akt). T cell lymphopenia in severe cases may represent cell death or peripheral migration. These facets depict SARS-Cov-2 as a lympho-manipulative pathogen; it distorts T cell function, numbers, and death, and creates a dysfunctional immune response. Whether preservation of T cells, prevention of their aberrant differentiation, and expansion of their population may alter disease course is unknown. Its investigation requires experimental interrogation of the linked differentiation and death pathway by agents known to uncouple T cell proliferation and differentiation in both CD4+ and CD8+ T cells.


Subject(s)
Apoptosis/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cell Differentiation/immunology , Proto-Oncogene Proteins c-akt/immunology , SARS-CoV-2/immunology , fas Receptor/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Humans
14.
Br J Haematol ; 191(2): 207-211, 2020 10.
Article in English | MEDLINE | ID: covidwho-652703

ABSTRACT

A low count of CD4+ and CD8+ lymphocytes is a hallmark laboratory finding in the coronavirus disease 2019 (COVID-19). Using flow cytometry, we observed significantly higher CD95 (Fas) and PD-1 expression on both CD4+ T and CD8+ T cells in 42 COVID-19 patients when compared to controls. Higher CD95 expression in CD4+ cells correlated with lower CD4+ counts. A higher expression of CD95 in CD4+ and CD8+ lymphocytes correlated with a lower percentage of naive events. Our results might suggest a shift to antigen-activated T cells, expressing molecules increasing their propensity to apoptosis and exhaustion during COVID-19 infection.


Subject(s)
CD4-Positive T-Lymphocytes/chemistry , CD8-Positive T-Lymphocytes/chemistry , COVID-19/immunology , Lymphocyte Subsets/chemistry , Lymphopenia/etiology , Programmed Cell Death 1 Receptor/blood , fas Receptor/blood , Adult , Aged , Aged, 80 and over , Aging/blood , Aging/immunology , Apoptosis , COVID-19/blood , COVID-19/complications , Female , Humans , Lymphocyte Count , Male , Middle Aged , Prognosis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL